Risk Measures and Interest Rate Ambiguity

Nicole El Karoui, (Ecole Polytechnique-CMAP),
Claudia Ravanelli, (ISB, Univ of Zurich),
Princeton Workshop - October 6-7, 2006
Introduction and Motivation

Risk management

- New developments, new regulatory rules.
- Credit risk regulation: Bâle II

Question: How to take into account ambiguity on interest rates, or time to default? Classical monetary risk measures are not adapted tools to do that.

Design of new financial products in this context

- Credit derivatives
- How to design financial contracts when ambiguity on time to default.
- Which optimal risk transfer in this context?

Main question

How to separate the specific risk of the future exposure of the discount (defaутable) risk
Some related works (among many others...!!)

* Insurance literature on optimal policy design: Borch (1962), Bühlmann (1970), Raviv (1979), Gerber (1980)...

* Risk measures
Convex Risk measures : Basic properties

Definition: Let \((\Omega, \mathcal{F})\) be a standard measurable space and \(\mathcal{X}\) the linear space of bounded functions (including constant functions).

The functional \(\rho\) is a \textbf{monetary risk measure} if it satisfies:

- **Convexity, and Decreasing monotonicity;**
- **Translation invariance:** \(\forall X \in \mathcal{X}, \forall m \in \mathbb{R}, \quad \rho(X + m) = \rho(X) - m.\)

 \(\text{In particular, } \rho(X + \rho(X)) = 0.\)

Dual representation: The convexity of the framework leads to an "explicit" representation. There exists a \textbf{penalty function} \(\alpha\) taking values in \(\mathbb{R} \cup \{+\infty\}\) such that:

\[
\forall \Psi \in \mathcal{X}, \quad \rho(\Psi) = \sup_{Q \in \mathcal{M}_{1,f}} \{\mathbb{E}_Q[-\Psi] - \alpha(Q)\}
\]

\[
\forall Q \in \mathcal{M}_{1,f}, \quad \alpha(Q) = \sup_{\Psi \in \mathcal{X}} \{\mathbb{E}_Q[-\Psi] - \rho(\Psi)\}
\]

where \(\mathcal{M}_{1,f}\) is the set of all additive measures on \((\Omega, \mathcal{F})\).

Moreover, the supremum is attained in the first equation in \(\mathcal{M}_{1,f}\).
Cash-Invariance and Discounting

Definition of monetary risk measure implicitly assumes that future risk position and risk measure are expressed in the same numéraire.

Convention : $1_T = 1$ unit of cash available at time T, and $D_{0,T}$ is a random discount factor.

Spot risk measure (Foellmer-Schied, 2004) et Cash-invariance

$$\rho_0(D_{0,T}X_T + m_{10}) = \rho_0(D_{0,T}X_T) + \rho_0(m_{10}), \quad \rho_0(m_{10}) = -m_{10}$$

Forward risk measure (Rouge-El Karoui, 2000))

$$\rho_T(X_T) = \rho_T(X_T + m_{1T}) = \rho_T(X_T) + \rho_T(m_{1T}) \text{ and } \rho_T(1_T) = -1$$
Forward versus Spot risk measure

Suppose a zero-coupon bond with maturity T is traded on the market at $B(0, T)$. As in interest rates framework, define

$$\mathcal{R}_0(D_{0,T}X_T) := B(0, T) \rho_T(X_T)$$

- Then, \mathcal{R}_0 is a cash-invariance risk measure iff ρ_T satisfies the calibration constraint: $\rho_T(\lambda D_{0,T}^{-1}) = -\lambda B(0, T)^{-1}$. Then, for any Q_T in the domain of α_T, $E_{Q_T}(D_{0,T}^{-1}) = B(0, T)^{-1}$.
- Characterisation of \mathcal{R}_0 domain: Q_0 belongs to dom(α_0) iff the forward measure Q_T defined as usual by $\frac{dQ_T}{dQ_0} = D_{0,T}/B(0, T)$ belongs to dom(α_T).

What happens when zero-coupon bonds are non quoted on the market, and more generally when ambiguity on interest rates occurs.
Cash sub-additive Risk measure

Motivation: Given a risk measure ρ and a discount factor $D_{0,T} \in [0, 1]$, observe that, if $\mathcal{R}(X_T) = \rho(X_T D_{0,T})$, then for $\forall X_T \in \mathcal{X}_T$

$$\forall m \geq 0, \quad \mathcal{R}(X_T + m1_T) = \rho(X_T D_{0,T} + mD_{0,T})$$

$$\geq \rho(X_T D_{0,T} + m1_0) = \rho(X_T D_{0,T}) - m1_0 = \mathcal{R}(X_T) - m1_0.$$

We take this property as the natural one to replace the cash invariant axiom, for risk functional expressed as *today cash* but directly defined of future position.

Def: Any convex, decreasing, functional \mathcal{R} defined on \mathcal{X}_T is called Cash sub-additive Risk measure iff for any $X_T \in \mathcal{X}_T$ the function $m \in \mathcal{R} \mapsto \mathcal{R}(X_T + m1_T) + m1_0$ is nondecreasing.
Cash sub-additive Risk measure

Example: Ambiguous discount factors

- Assume that the *classical risk measure* used by the regulator is $\bar{\rho}$, a spot-cash invariant risk measure on \mathcal{X}_T. But in fact only a *confidence interval* for the discount factors is available, that is unknown D_T are ranging between two constants: $0 \leq d_L \leq d_H \leq 1$.

- To give a price to discount factor ambiguity, Regulator assesses risk of future payoff X_T in the **worst case interest rates scenario**:

$$
R^{\bar{\rho}, D}(X_T) := \sup \{ \bar{\rho}(D_T X_T) \mid D_T \in \mathcal{X}, \quad 0 \leq d_L \leq D_T \leq d_H \leq 1 \}.
$$

$R^{\bar{\rho}, D}$ is obviously a **cash sub-additive risk measure**. Moreover,

$$
R^{\bar{\rho}, D}(X_T) = \bar{\rho}(-v(X_T)), \quad v(x) = -(d_L x^+ - d_H (-x)^+)
$$

- The classical measure of risk used in global risk management is the **Put premium** risk measure (Jarrow (2002)), defined as the expected loss

$$
R(X_T) = \frac{1}{r} \mathbb{E}[(X_T)^+], \quad r \geq 1.
$$

- Same result still holds, if d_H and d_L are given \mathcal{F}_T-r.v in $[0, 1]$.

Princeton-Oct 2006
Proposition

- Let \(v_T \) be a \(\mathcal{F}_T \) family of real, convex, decreasing functions such that: \(v_T(0) = 0 \), and \((v_T)'_x \in [-1, 0] \). Let \(\beta_T(y) = \sup_{x \in \mathbb{R}} \{xy - v(x)\} \) be the \(\mathcal{F}_T \)-measurable convex convex Fenchel transform of \(v_T \), defined on \([-1,0]\). For instance, for ambiguous discount factors, \(\beta_T(y) = l(-y) \) where \(l \) is the convex indicator function of the random interval \(\mathcal{D}_T = \{D_T \in \mathcal{X}_T|0 \leq D_L \leq D_T \leq D_H \leq 1\} \)

- \(\overline{\rho} \) is a cash invariant r.m. on \(\mathcal{X} \) with minimal penalty function \(\alpha \overline{\rho} \).

\[\Rightarrow \mathcal{R}_{\overline{\rho},v}(X_T) := \overline{\rho}(-v(X_T)) \text{ is a cash sub-additive r.m.}, \text{ such that} \]

\[\mathcal{R}_{\overline{\rho},v}(X_T) = \sup_{D_T \in \mathcal{X}} \{\overline{\rho}(D_T X_T + \beta(-D_T)) \mid 0 \leq D_T \leq 1\} \]

\[\Rightarrow \text{Dual representation.} \]

\[\mathcal{R}_{\overline{\rho},v}(X_T) = \sup_{\overline{Q}, D_T} \left\{ \mathbb{E}_{\overline{Q}}[-D_T X_T] - \alpha_{\overline{\rho},v}(\overline{Q}, D_T) \mid 0 \leq D_T \leq 1 \right\} \]

where \(\alpha_{\overline{\rho},v}(\overline{Q}, D_T) := \alpha \overline{\rho}(\overline{Q}) + \mathbb{E}_{\overline{Q}}[\beta_T(-D_T)] \)
Dual Representation

The dual representation can be obtained

- either using convex analysis tools
- or extending cash sub-additive r.m. to cash invariant r.m. and then exploiting their dual representation

We are looking for a “minimal” extension of \mathcal{R}, based on the key property: If $\hat{\rho}(X_T, x) := \mathcal{R}(X_T 1_T - x 1_T) - x$, then this functional is cash invariant as function of (X_T, x),

$$
\hat{\rho}(X_T + m, x + m) = \mathcal{R}(X_T + m - (x + m)1_T) - (x + m) = \hat{\rho}(X_T, x) - m
$$
Minimal enlarged space

(X_T, x) may be viewed as the “coordinates” of some r.v. \hat{X}_T on the extended space $\hat{\Omega} = \Omega \times \{1, 0\}$ such that

$$\hat{X}_T(\omega, \theta) = X_T(\omega)1_{\{\theta = 1\}} + x1_{\{\theta = 0\}}, \quad \text{so that} \quad \{\theta = 0\} \text{is a atome}$$

The correspondence is one to one.

Extended Risk measure

Let \mathcal{R} be a cash sub-additive risk measure defined on \mathcal{X}_T. \mathcal{R} generates a cash-additive risk-measure $\hat{\rho}$ on the space $\hat{\mathcal{X}}_T$ of the bounded $\hat{\mathcal{F}}_T$-r.v.

$$\hat{\rho}(X_T1_{\{\theta = 1\}} + x1_{\{\theta = 0\}}) = \hat{\mathcal{R}}(X_T, x) := \mathcal{R}(X_T - x1_T) - x1_0,$$

$\hat{\rho}(X_T(\omega)1_{\{\theta = 1\}})$ can be identified with $\mathcal{R}(X_T)$.

$$\hat{\mathcal{R}}(X_T, x) = \mathcal{R}(X_T - x) - x \leq \mathcal{R}(X_T - y) - y \leq \hat{\mathcal{R}}(Y_T, y) - y = \hat{\mathcal{R}}(Y_T, y).$$

In terms of “economic default time”, $\{\theta = 1\}$ may be viewed as $\{T < \tau\}$.
Dual representation of \mathcal{R}

Any probability measure $\hat{\mathbb{Q}}$ on $\hat{\Omega}$ can be decomposed into

\[
\hat{\mathbb{Q}}(X_T \mathbf{1}_{\theta = 1} + x \mathbf{1}_{\theta = 1}) = \hat{\mathbb{Q}}(\{\theta = 1\})\hat{\mathbb{Q}}(X_T|\{\theta = 1\}) + x(1 - \hat{\mathbb{Q}}(\{\theta = 1\})) \\
= \hat{q} \mathbb{Q}^1(X_T) + x (1 - \hat{q}) = \mu(X_T) + x(1 - \mu(1))
\]

Characterization The minimal penalty function $\hat{\alpha}(\hat{\mathbb{Q}}) = \alpha(\mu)$ depends only on $\mu = \hat{q} \mathbb{Q}^1$, and

\[
\begin{align*}
\hat{\alpha}(\hat{\mathbb{Q}}) &= \sup_{X_T \in \mathcal{X}_T, x \in \mathbb{R}} \left\{ \mathbb{E}_{\hat{\mathbb{Q}}}[-(X_T - x)\mathbf{1}_{\theta = 1}] - \mathcal{R}(X_T - x) \right\} \\
&= \sup_{Y_T \in \mathcal{X}_T} \left\{ \mu(-Y_T) - \mathcal{R}(Y_T) \right\} \\
\mathcal{R}(X_T) &= \sup_{\mu \in \mathcal{M}_i} \left\{ \mu(-X_T) - \alpha(\mu) \right\}
\end{align*}
\]

Remark The risk measure $\hat{\mathcal{R}}$ is not defined on the space \mathcal{X}_T
More natural extension

The aim of this second extension is to define a risk measure \(\tilde{\rho} \) on a space \(\tilde{\mathcal{X}}_T \) of bounded r.v. containing \(\mathcal{X}_T \). We need

\(\Rightarrow \) to define the r.v. \(\tilde{X}_T = X^1_T 1\{\theta=1\} + X^0_T 1\{\theta=0\} \)

\(\Rightarrow \) to introduce a arbitrary(normalized) monetary risk measure \(\rho_0 \) on order to specify a “a priori” risk measure for \(X^0_T \).

Two monetary risk measures The functional \(\tilde{\rho} \) defined by

\[
\tilde{\rho}(X^1_T 1\{\theta=1\} + X^0_T 1\{\theta=0\}) = \mathcal{R} \left(X^1_T + \rho_0(X^0_T) \right) + \rho_0(X^0_T)
\]

is a monetary risk measure, with minimal penalty function, for any \(\tilde{Q} = \tilde{q}^1 \tilde{Q}^1 + \tilde{q}^0 \tilde{Q}^0 \)

\[
\tilde{\alpha}(\tilde{Q}) = \alpha_{\mathcal{R}}(\tilde{q}^1 \tilde{Q}^1) + \tilde{q}^0 \alpha_0(\tilde{Q}^0)
\]
The functional \(\rho_\mathcal{R}(X_T) = \tilde{\rho}(X_T, X_T) = \mathcal{R}(X_T + \rho_0(X_T)) + \rho_0(X_T) \) is a monetary risk measure with penalty functional

\[
\alpha_{\rho_\mathcal{R}}(Q) = \inf_{(\tilde{q}^1, \tilde{Q}^1, \tilde{q}^0, \tilde{Q}^0 | Q = \tilde{q}^1 \tilde{Q}^1 + \tilde{q}^0 \tilde{Q}^0)} \alpha_\mathcal{R}(\tilde{q}^1 \tilde{Q}^1) + \tilde{q}^0 \alpha_0(\tilde{Q}^0)
\]

- \(\rho_\mathcal{R} \) does not allow us to recover \(\mathcal{R} \).
- Given \(\tilde{Q} \in \text{Dom}(\tilde{\alpha}) \), and \(Q \) the induced probability measure on \(\mathcal{F}_T \). Then, \(Q \) belongs to \(\text{Dom}(\alpha_{\rho_\mathcal{R}}) \). Let us denoted by \(D_{0,T} \) the \(\tilde{Q} \)-conditional expectation of \(1_{\theta=1} \) given \(\mathcal{F}_T \). Then, \(\tilde{Q}(X_T 1_{\theta=1}) = Q(X_T D_{0,T}) \), and

\[
\tilde{Q}(X_T 1_{\theta=0}) = Q(X_T (1 - D_{0,T})), \iff dQ^0 = \frac{(1 - D_{0,T})}{\tilde{q}^0} dQ
\]

\[
\mathcal{R}(X_T) = \sup_{(Q, D_{0,T}) \in \mathcal{A}} \{Q(-X_T D_{0,T}) - (\alpha_\mathcal{R}(D_{0,T}.Q) + \tilde{q}^0 \tilde{\alpha}(Q^0)) \}
\]

\[
\mathcal{A} = \{(Q, D_{0,T}) \text{s.t.} Q \in \text{Dom}(\alpha_{\rho_\mathcal{R}}), D_{0,T}.Q \in \text{Dom}(\alpha_\mathcal{R}), \tilde{Q}^0 \in \text{Dom}(\alpha_0)\}
\]
Conditional Risk measures

A natural question is to try to factorize $\tilde{\rho}$ in terms of $\rho_{\mathcal{R}}$ and some conditional risk measure between $\tilde{\mathcal{F}}_T$ and \mathcal{F}_T.

Convex function and Risk measure on $\{0, 1\}$ Let ρ be a monetary risk measure on $\lambda 1_{\{\theta=1\}} + \mu 1_{\{\theta=0\}}$. Then

$$\rho(\lambda 1_{\{\theta=1\}} + \mu 1_{\{\theta=0\}}) = \rho((\lambda - \mu) 1_{\{\theta=1\}}) - \mu$$

Put $v(x) = \rho(x 1_{\{\theta=1\}})$.

Then v is a real convex decreasing function such that $v'(x) \geq -1$.

Natural extension to previous filtrations, with \mathcal{F}_T-random $V_T(X_T)$.

- Natural way to generate cash subadditive r.m : $\mathcal{R} \tilde{\rho},(X_T) := \tilde{\rho}(-V_T(X_T))$
- In general, such decomposition does not hold
Optimal Derivative Design

\[Agent \ A \]
Exposure \(X^A_T \) \quad \text{F}_T \quad \text{Exposure} \(X^B_T \)

\[\pi_0 \]

\[\Rightarrow \] We want to determine the optimal transaction \((F, \pi)\).

Transaction feasibility

\[\star \] Agent A looks for a hedge of her exposure: \(\inf_{F \in \mathcal{X}, \pi} \mathcal{R}_A(X^A_T - F_T) - \pi_0 \).

\[\star \] Agent B wants to improve her risk measure: \(\mathcal{R}_B(X^B_T + F_T) + \pi_0 \leq \rho_B(X^B_T) \).

\[\Rightarrow \] Optimal pricing rule: \((\pi^*_B)_0(F_T) = \mathcal{R}_B(X^B_T) - \mathcal{R}_B(X^B_T + F) \).
Inf-convolution

Theorem: Let \mathcal{R}_A and \mathcal{R}_B be two cash sublinear risk measures with respective penalty functions α_A and α_B. Let $\mathcal{R}_{A,B}$ be the inf-convolution of \mathcal{R}_A and \mathcal{R}_B

$$\Psi \to \mathcal{R}_{A,B}(\Psi) \equiv \mathcal{R}_A \square \mathcal{R}_B(\Psi) = \inf_{H \in \mathcal{X}} \{ \mathcal{R}_A(\Psi - H) + \mathcal{R}_B(H) \}$$

and assume that $\mathcal{R}_{A,B}(0) > -\infty$.

- Then $\mathcal{R}_{A,B}$ is a cash sub-linear convex risk measure.
- The associated penalty function is given by

$$\forall \mu \in \mathcal{M}_1^s, \quad \alpha_{\mathcal{R}_{A,B}}(\mu) = \alpha_A(\mu) + \alpha_B(\mu).$$

- $\mathcal{R}_{A,B}$ is continuous from below as soon as this property holds for \mathcal{R}_A or \mathcal{R}_B.
Infinitesimal Risk Measures and BSDE’s

Let \((\Omega, (\mathcal{F}_t), \mathbb{P})\) be the natural space associated with a Brownian motion \(W = (W_t, t \leq T)\). Following BSDE’s point of view (NEK-Peng-Quenez, Pengg-expectation, Barrieu-NEK, Schweitzer, Delbaen....), we define

\[-dY_t = g(t, Y_t, Z_t)dt - \langle Z_t, dW_t \rangle, \quad Y_T = -X_T\]

The solution is a pair of adapted processes \((\mathcal{R}_t^g, Z_t)\) in some \(L^2\) space.

- (Peng,Barrieu-NEK) if \(g\) does not depend on \(y\) and convex in \(z\), then \(\rho_t(X_T) = Y_t\) is a cash invariante convex risk measure (+ \(g\) with quadratic growth)

- Only assume \(g\) to be convex in both variables \((y,z)\), and decreasing w.r to \(y+\) (linear growth in \(y\) quadratic in \(z\)). Then \(\mathcal{R}_t^g(X) = Y_t\) is a cash sub-additive risk measure.

- The proof is based on : \(\mathcal{R}_t^g(X + m) + m = Y_t^m\) is solution of the same BSDE with coefficient \(g^m(t, y, z) = g(t, y - m, z)\) + comparison theorem.
Dual representation

\[-dY_t = g(t, Y_t, Z_t)dt - \langle Z_t, dW_t \rangle, \quad Y_T = -X_T\]

\[\Rightarrow \text{ Let } G(t, \beta, \mu) \text{ be the Fenchel transform of } g(t, y, z), \ (\beta \geq 0)\]

\[\Rightarrow \text{ Any } Q^\mu \text{ equivalent probability measure w.r. to } P\]

\[
\frac{dQ^\mu}{dP} := \Gamma_T^\mu, \quad d\Gamma_t^\mu = \Gamma_t^\mu \mu_t^* dW_t, \quad \Gamma_0^\mu = 1
\]

\[\Rightarrow D_T := e^{-\int_0^T \beta_s ds} \text{ discount factor } (\beta \geq 0)\]

\[\Rightarrow \text{ penalty functions } : G(t, \beta, \mu) := \mathbb{E}_{Q^\mu} \left[\int_t^T e^{-\int_t^r \beta_s ds} G(\beta_r, \mu_r) dr \mid \mathcal{F}_t \right];\]

Then \(Y_t = \mathcal{R}_t^g \) has the following dual representation

\[
\mathcal{R}_t^g(X_T) = \text{ess sup}_{(\beta, \mu) \in \mathcal{A}} \mathbb{E}_{Q^\mu} \left[-e^{-\int_t^T \beta_s ds} X_T - \int_t^T e^{-\int_t^r \beta_s ds} G(r, \mu) dr \mid F_t \right]
\]
Summary and conclusions

⇒ We introduce a new class of cash sub-additive risk measures R
⇒ R suitable to assess the risk of financial positions under uncertain interest rates and other risks (e.g. default risk)
⇒ we extend R to cash invariant r.m. defined on enlarged spaces
 • we extend R to cash invariant r.m. defined on enlarged spaces
 • Dual representation of R
 • we identify R from cash invariant r.m. in term of F_T-measures and F_T-stochastic discount factors